@medium.com
//
The Post-Quantum Cryptography Coalition (PQCC) has recently published a comprehensive roadmap designed to assist organizations in transitioning from traditional cryptographic systems to quantum-resistant alternatives. This strategic initiative comes as quantum computing capabilities rapidly advance, posing a significant threat to existing data security measures. The roadmap emphasizes the importance of proactive planning to mitigate long-term risks associated with cryptographically relevant quantum computers. It is structured into four key implementation categories: Preparation, Baseline Understanding, Planning and Execution, and Monitoring and Evaluation.
The roadmap offers detailed steps for organizations to customize their adoption strategies, regardless of size or sector. Activities include inventorying cryptographic assets, assigning migration leads, prioritizing systems for upgrades, and aligning stakeholders across technical and operational domains. Furthermore, it underscores the urgency of Post-Quantum Cryptography (PQC) adoption, particularly for entities managing long-lived or sensitive data vulnerable to "harvest now, decrypt later" attacks. Guidance is also provided on vendor engagement, creating a cryptographic bill of materials (CBOM), and integrating cryptographic agility into procurement and system updates. In related advancements, research is focusing on enhancing the efficiency of post-quantum cryptographic algorithms through hardware implementations. A new study proposes a Modular Tiled Toeplitz Matrix-Vector Polynomial Multiplication (MT-TMVP) method for lattice-based PQC algorithms, specifically designed for Field Programmable Gate Arrays (FPGAs). This innovative approach significantly reduces resource utilization and improves the Area-Delay Product (ADP) compared to existing polynomial multipliers. By leveraging Block RAM (BRAM), the architecture also offers enhanced robustness against timing-based Side-Channel Attacks (SCAs), making it a modular and scalable solution for varying polynomial degrees. This combined with hybrid cryptographic models is a practical guide to implementing post quantum cryptography using hybrid models for TLS, PKI, and identity infrastructure. References :
Classification:
@www.microsoft.com
//
IACR News has highlighted recent advancements in post-quantum cryptography, essential for safeguarding data against future quantum computer attacks. A key area of focus is the development of algorithms and protocols that remain secure even when classical cryptographic methods become vulnerable. Among these efforts, FrodoKEM stands out as a conservative quantum-safe cryptographic algorithm, designed to provide strong security guarantees in the face of quantum computing threats.
The adaptive security of key-unique threshold signatures is also under scrutiny. Research presented by Elizabeth Crites, Chelsea Komlo, and Mary Mallere, investigates the security assumptions required to prove the adaptive security of threshold signatures. Their work reveals impossibility results that highlight the difficulty of achieving adaptive security for key-unique threshold signatures, particularly for schemes compatible with standard, single-party signatures like BLS, ECDSA, and Schnorr. This research aims to guide the development of new assumptions and properties for constructing adaptively secure threshold schemes. In related news, Muhammed F. Esgin is offering PhD and Post-Doc positions in post-quantum cryptography, emphasizing the need for candidates with a strong mathematical and cryptography background. Students at Monash University can expect to work on their research from the beginning, supported by competitive stipends and opportunities for teaching assistant roles. These academic opportunities are crucial for training the next generation of cryptographers who will develop and implement post-quantum solutions. References :
Classification:
|